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In this paper I take up the questions posed by the conference organisers with respect to what we have 
learned and where we are going in technology-based research in mathematics education research. I 
begin by troubling the metaphors of crossroads and intersections and argue—through a wide range 
of considerations in relation to past research, to theory development, to teaching practices, to 
assessment and curriculum design and to concerns around access and equity—that there may be 
more fruitful metaphors for understanding our past and imagining our future.  
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The metaphors of ‘crossroads’ and ‘intersections’ that were chosen for this conference are worth 
dwelling upon, in relation to research on the use of digital technologies. Crossroads are often used 
symbolically in literature, drawing on Sophocles’ work Oedipus, to indicate a crucial moment of 
choice. In Oedipus there were three possible roads to follow, perhaps evoking past, present and 
future. But Sophocles’ idea of choice may be less about making an independent decision, than about 
following the roads that have been carved by destiny: Oedipus was always going to end up killing his 
father. The invitation of the conference organisers to think in terms of crossroads provoked for me 
some questions about whether we really are at a decision point with numerous options available and 
whether one choice might be inevitable. The metaphor of intersections, which is similar in some 
ways, also has more mathematical connotations, ones that evoke significant ideas in geometry, 
especially around whether lines will intersect, how many times they will intersect and what it means 
to not intersect at all—all these questions being beautifully perturbed by moving to dimensions 
beyond the plane. But what could it be, in the context of research on technology in mathematics 
education, that could be seen as a crossroad or an intersection?  

In considering this question, I was reminded of the work of the anthropologist Tim Ingold 
(2007), whose book Lines: A brief history traces the way in which the very idea of line functions 
metaphorically in Western society. He argues that it is so deep and entrenched that we can often find 
ourselves using it to describe a wide range of phenomena—often using words such as trajectories, 
paths, roads, trails, courses, routes—that might not actually be so linear or straight or one-
dimensional. In his book, Ingold distinguishes two ways of thinking lines: as transporting and as 
wayfaring. In the former, we might think of getting from point A to point B and the line is the 
journey that gets us there. In the latter, the line is what one makes as one moves; there is no path 
independent of the travelling. Transposed to a theory of learning, the former would tend to conceive 
of learning as a sequence of journeys one might make from one concept to the next; the latter would 
focus on the act of tracing, on the direction that is taken and the new territory being explored. The 
former involves reaching successive destinations while the latter involves creating paths. Whereas 
crossroads and intersections, at least in my own imagery of them, have the past, the present and the 
future already laid out—you can go this way or that—I wonder whether it is possible to dwell in the 
present and so withhold the temptation to pre-determine a destination, let alone the journey that will 
take us there. Getting off the plane, we might even be able to think of creating paths that loop around 
like a Mobius strip or fan out into a surface or sprout into 17 dimensions, only four of which we 
might actually be able to see. As with most of our thinking around education, such an approach, 
which embraces multiplicity, indeterminacy and nonsense, may be the best way to handle the 
complexity of digital technology use in mathematics education.  
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In what follows, I have attempted to address the questions and prompts offered by the conference 
organisers, not in a way that is exhaustive, but that is opportunistic—drawing on my own research 
and research interests in technology. I will try to keep the provocation of anti-crosswords alive 
throughout, inviting readers to think less in terms of the image in Figure 1a and more in terms of the 
image in Figure 1b, which is a replica of the cover of Ingold’s book.  

 

Figure 1. From transporting (intersections and crossroads) to wayfaring.  

What we Have Learned from the Routes we Have Traversed 
One way of seeing research in mathematics education is as an activity that enables us to answer 

questions, question such as: Should digital technologies be used in mathematics classroom? When is 
one technology better than another? What does a given technology change the way students learn? 
Another way of seeing research in mathematics education is as a practice of posing new questions, 
perhaps transforming the questions we started with so that they better respond to the complexities of 
the mathematics classroom. In this second kind of practice, the questions shift: new paths are created. 
Researchers have realised that the first question listed above, for example, depends less on empirical 
evidence than on assumptions about the goals of mathematics education. The second question may 
shift if one realizes that each technology might produce a different mathematical conception, in 
which case deciding on which is the best depends on many factors, ranging from aesthetic choices in 
mathematics to considerations of what might be evaluated on standardised tests. The third question 
listed above will also morph as researchers begin to appreciate that the student-technology dyad is a 
reductive focus, and that the role of the teacher, of the curriculum and of the classroom environment 
are also significant factors in what is learned.  

To answer the question of what we have learned, it thus seems reasonable to consider how our 
questions have changed over the past few decades of research on the use of technology in 
mathematics education. I turn to the recently published Second Handbook of Research on the 
Psychology of Mathematics Education (Gutiérrez et al., 2016), which contains a chapter on 
technology (Sinclair & Yerushalmy, 2016) that considers the research published in the PME 
proceedings from 2006-2016. This is just one source—other Handbooks could also have been 
considered—but I have chosen it because it is international and because it explicitly compared 
research over the past decade with research conducted over the previous decade, which was reported 
in the first Handbook of Research on the Psychology of Mathematics Education, which was 
published in 2006.   

The authors of the technology chapter report that while the 2006 Handbook had been structured 
into different topic areas (geometry, arithmetic and algebra), the research over the past decade was 
less amenable to such a categorization, in part because the research was less explicitly concerned 
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with particular mathematical concepts. Instead, the primary concerns were theory, the role of the 
teacher, new technologies and the design of tasks and assessment. The authors found that while the 
majority of papers in PME proceedings were related to the use of well-known digital technologies 
such as dynamic geometry environments, computer algebra systems, graphing calculators and 
spreadsheets, these papers were less focused on the question of ‘do they work?’ than on questions 
such as: how do teachers integrate them? How might suitable tasks be designed for the use of a given 
technology? How might new theories help us understand the role that technologies play in teachers’ 
and students’ mathematical activity? Indeed, with respect to the first question, the authors remark on 
the attention not only to the teacher’s role in using a given technology in the classroom, but to the 
challenge of orchestrating several types of resources: “Technology has opened up new challenges for 
teaching, not only in terms of their knowledge and beliefs, but also in terms of the complexities of 
integrating different kinds of resources” (p. 236). The shifting emphasis from the learner to the 
teacher can also be seen in the recently published edited collection entitled The mathematics teacher 
in the digital age (Clark-Wilson et al., 2014). This book was heavily oriented towards theory and 
professional development, but marked by a near absence of focus on mathematics. These new strands 
of research become entangled with prior foci of interest. 

An entire section of the chapter is devoted to theorising. The authors cite Drijvers, Kieran and 
Mariotti’s (2009) “plea for the development of integrative theoretical frameworks that allow for the 
articulation of different theoretical perspectives” (p. 89), especially ones that can extend and refine 
the two dominant theories found in European research: instrumentation theory and the theory of 
semiotic mediation. Sinclair and Yerushalmy report that while these two theories, which attend 
explicitly to the use of digital tools, were predominant, several other theoretical perspectives were 
used in the PME proceedings over the last decade, many of them not specifically attending to digital 
tools. The authors write that,  

With respect to the papers that do draw on theories, there has been significant development over 
the past decade, which suggests that the field of mathematics education related to digital 
technology has certainly matured; it has evolved from being an “experimentation niche” and has 
become an established domain of research that now carries a more solid message for the future 
(p. 251).  

The authors go on to identify two issues related to theory use: first, they argue that theories related to 
the use of digital technologies need to be better coordinated with more general and established 
theories; second, while there has been a burgeoning of theory use and development, the concomitant 
development of associated methodologies has not kept pace. The idea of better coordination might 
imply some kind of intersections with other theories, but the simple crossing of one theory with 
another rarely does justice to the epistemological, ontological and axiological commitments of each.  

One thing that we can say about “what we have learned from the routes we have traversed” is 
that the use of new theories has enabled us to ask different, more refined questions about the use of 
technology mathematical teaching and learning. For example, instead of asking “did the students 
learn fractions better?” an instrumental genesis approach might focus more on the new schemes that 
the students developed in using a given technology to work with fractions; a semiotic mediation 
approach might focus on the particular gestures that students made while using a technology and how 
they were transformed into mathematical signs by the classroom teacher. In both cases, there is not a 
revisiting of the initial question, but a re-layering of it. These questions focus less on the determining 
whether digital technologies should be used or whether they work better than other resources; they 
instead take technology use as a given and investigate the complex and often unexpected effects on 
how learners move their bodies, how mathematical concepts seem to arise and crystallise in new 
ways and how aspects of classroom activity, such as language use, student agency and material 
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arrangements (of furniture, devices, bodies) change as well.  
One final note on what we have learned relates to the evolution of research identified by Sinclair 

and Yerushalmy from the study of the use of “second wave technologies” i, which are open in the 
sense that they do not contain embedded tasks, to an interest in task embedded digital technologies, 
“which direct the actions and uses to more specific purposes” and evaluative digital technologies, 
which “provide feedback on students’ responses and actions” (p. 252). The inclusion of tasks and 
evaluative features may improve accessibility for teachers in that it takes care of some of the 
decisions that teachers would have to make with more open technologies such as identify and 
choosing problems and assessing student learning. Of course, the streamlining of open digital 
technologies may also have an adverse effect on classroom use, inasmuch as openness has often been 
taken as crucial for encouraging curiosity, expressiveness and agency. Nonetheless, we see in this 
evolution a complexifying of technology in which it is not simply the hardware/software device with 
strict boundaries, but instead a more amorphous entity that includes its associated tasks and modes of 
use. The question is less about technology A then it is about technology A using task B in setting C. 

Addressing Issues of Access and Equity within Mathematics Education Today 
For the most part, at least according to reports in the literature, the long-standing challenge of 

access—that is, whether students and teachers have access to computers and to software—is no 
longer the main hurdle in digital technology integration. Not only have computers become more 
common in classrooms, but many schools have embraced tablets; furthermore, the trend towards free 
software (including free versions of software programs that were originally licensed) has removed 
some hurdles for teachers, especially teachers in developing countriesii.  

As intimated above, the greater hurdle for technology integration relates to teaching practices, to 
curriculum and to assessment—and, in a sense to access to professional development (see Clark-
Wilson et al., 2014). In terms of equity, there have been two main, different approaches to supporting 
diverse learners’ needs through the use of technology. These seem to entail quite different 
understandings of what certain learners need in order to have more mathematical success. The 
development of new digital technologies addressing equity has focused mainly on students diagnosed 
with learning disabilities (MLDs), as well as deaf and blind studentsiii. In the area of the MLDs, for 
example, there have been several software programs created to help struggling children improve their 
number sense. These tend to be focussed on particular aspects of number and designed as instructiveiv 
environment, which provide instant evaluative feedback and tend to target procedural skills. Such 
programmes aim primarily to address the deficits of the children; equity thus identifies the problem 
as belonging to the learner (rather than to the mathematics, the environment, etc.). Unfortunately, 
despite some promising results (Butterworth & Laurillard, 2010), researchers such as Goodwin and 
Highfield (2013) have shown that children working with the instructive digital technology were more 
focussed on receiving positive feedback than on discussing or reflecting on the embedded 
mathematical concept.  

A different approach has been taken up by researchers in Brazil (see Fernandes et al., 2011; 
2013; Santos, et al., 2013), who have studied the use of digital technologies in inclusive classrooms 
(that may include deaf, blind, seeing and hearing students), and have developed more manipulative 
technologies. Their design and research process seeks to identify different ways of interacting with 
mathematics that may help all learners, and not just those diagnosed with disabilities. Such work 
requires re-thinking mathematics (as something that can be heard, for example, instead of seen 
through symbols or graphs) instead of merely simplifying traditional mathematics or breaking it 
down into steps. Their approach to equity identifies the problem as belonging less to the learner than 
to the mathematics (or the ways it is taught). A similar approach was taken in the study reported by 
Cohen et al. (2017), which involved the use of the manipulative, mutitouch iPad app TouchCounts 
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with grade 1 children identified as low-achievers in the mathematics classroom. The app, which 
enables tangible, visual, aural and symbolic modes of interaction, was used both in the whole 
classroom situation, but also in a smaller group setting with the identified children. The use of 
fingers, which enabled these children to improve their subitising and awareness of place value, was 
also helpful for the other children in the classroom. 

Returning to the metaphors of crossroads, it seems that one image that drives the choice of 
technology used with MLDs is that the children cannot take one road, so they must take the other, 
thereby setting off a chain of entailments about two kinds of mathematics, two kinds of learners, two 
kinds of technology. Such an approach fails to consider the extent to which the traditional technology 
of mathematics (paper and pencil) is implicated in the very nature of school mathematics and the 
possibility that new technologies may change what school mathematics looks (and sounds and feels) 
like, and what mathematical actions might be valued in the classroom.  

Barriers within Research Traditions, Educational Policy, and Teaching Practice that Impede 
Researchers', Students' and Teachers' Success 

In the first section, I identified the recent burgeoning of theory that was evident in the last 10 
years of research published in the PME proceedings, as well as the current tendency for digital 
technology-specific theories to be isolated from other theories in mathematics education. A similar 
phenomenon—the segregating of technology and non-technology research—can also be seen in peer-
reviewed journal publication. This is evident when comparing articles published in JRME, FLM and 
ESM (three of the top-ranked, long-standing international journals in mathematics education). As 
Table 1 shows, there are relatively few articles that focus explicitly on the teaching and learning of 
mathematics using digital technology. The frequency of publication seems to be quite stable when 
comparing articles published in 1996, 2006 and 2016. 

One reason for this low frequency is the fact that there are several journals in which authors can 
choose to publish their work, journals where technology is an explicit focus (for example, IJCML 
(now TKL), DEME, IJMTL, CJMSTE). Publications in these ‘technology journals’ may not be in 
conversation with publications in journals such as JRME, FLM and ESM, thus leading to a group of 
theories that specialise in the use of technology and another group of theories that more or less ignore 
issues relating to technologyv. This has been partially true for the influential learning trajectory 
research, which though tending to a more Vygotskian perspective, which recognises the central 
importance of language and tools in learning, continues to identify and disseminate trajectories that 
do not specify the use of digital technologies. If technologies were used in any of the tasks studied by 
researchers, it is assumed that the stepping stones from one concept to another could be made no 
matter what technology is used—but the default technology is almost always paper and pencil. This 
point of view contradicts the Vygotskian premise, but also reifies a certain vision of mathematics 
teaching and learning that makes it more difficult for digital technologies to be taken up more 
widely—and thus contributing to the continued debate around “the basics” (see Roth, 2008).  

 

Table 1: Comparison of Articles Focused on the Use of Digital Technology Across Journals 
 JRME FLM ESM 
 Technology  Total Technology Total Technology  Total 
2016 1 12 1 29 3 61 
2006 0 13 2 31 0 50 
1996 0 23 1 23 2 32 
Total 1 48 4 83 5 143 
 2% 5% 3% 
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The ignoring of technology has also tended to occur in the areas of curriculum design and 
assessment (some of which is based on learning trajectory research). While standards in most 
countries may have language that includes reference to the importance of technology, the actual 
concepts that are listed, and the order in which they are listed, are determined in a way that is 
absolutely independent of any particular digital technology. For example, in the area of geometry, 
which is my research focus, a curriculum or textbook that asks students to engage in geometric 
construction by drawing shapes that have numerically determined side lengths and angle measures is 
anti-dynamicvi. This after two decades of research showing the pedagogical benefits of using 
dynamic geometry environments in the teacher and learning of geometry.  

Lines can be dangerous. Lines can begin as imaginary paths to be followed, but once carved, they 
can become troughs that are hard to escape. Research in the use of digital technologies can 
sometimes reinforce troughs, when it focuses more on how technologies make concepts more 
efficient or quick to learn, rather than underscoring the sometimes unexpected conceptual shifts that 
innovative digital technologies can occasion. 

The issue of assessment may be particularly important in high school and undergraduate 
contexts, where the use of digital technology on tests is often disallowed, meaning that students may 
be learning with a given technology but are being assessed as if that technology was a disposable 
scaffold to learning. Sangwin et al. (2010) argue, “if a teacher encourages students to make extensive 
use of tools in a course but does not allow their use on the end-of-course test, are students being 
given the opportunity to show what they learned with the use of such tools?” (p. 229). The issue is 
complex, however: in a study of secondary school teachers in Canada, Venturini (2015) found that 
teachers were reluctant to use digital technology assessment tasks because they were concerned that 
the students would learn as they used the digital technology, which was seen to contradict the 
purpose of assessment. 

In terms of teaching practices and teachers’ success, there has certainly been a dearth of research 
in this area. As Sinclair and Yerushalmy write, “Compared with research on student learning with 
technology, research on the teacher has not been as well developed” (p. 260). Nascent theory 
development began with the framework of TPACK, which describes the different types of 
knowledge that teachers may use in their teaching practices, adding technology to the well-known 
pedagogical and content knowledge aspects. As a theory, it is rather limited. More recently, theories 
that provide a more analytic lens on the role of the teacher in teaching with digital technology have 
been developed, based on theories of instrumental genesis (such as instrumental orchestration). 
Ruthven (2014) has also proposed a framework for analysing the teaching expertise that underpins 
successful use of digital technology in the mathematics classroom. His framework highlights the 
tensions that arise for teachers when trying to integrate technology, that relate to the lack of 
articulation between digital technologies and other resources such as textbooks, curricula and 
assessment. Worth studying would be situations in which this articulation has been attempted 
(perhaps with a high-quality e-textbook (see Pepin et al, 2015) or with trajectories that have been 
elaborated using digital technologies).  

Laying the Groundwork for Future Crossroads or Intersections Among Theory, Research, and 
Practice 

When thinking about future crossroads or intersections, two recent, related developments in 
educational research come to mind, both of which are highly relevant to technology. One is the 
association of mathematics with computational thinking (CT) and the other is the emergence of the 
idea of STEM. Both developments have received substantial funding over the past decade (and have 
given rise to specialized conferences, journals and special issues) and will likely shape future 
discussions around the role of technology in mathematics education. In both cases, the role of 
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technology shifts quite significantly from the way it has been conceived in research over the past two 
decades. Before commenting on whether or not we are at a crossroads, I would like to look more 
closely at each new development in turn. 

In the case of CT, the research initiatives most closely associated with mathematics education 
have involved studying the use of computer programming as a means to support mathematical 
learning, much in the tradition of Papert (1980). For example, Benton et al. (2017) as well as 
Gadanidis et al. (2016) explore the use of Scratch programming in relation to concepts that are 
recognizably mathematical (e.g., angle, binomial theorem). In these two cases, the digital technology 
in question is one that was not designed specifically for the teaching and learning of mathematics, 
and that entails practices and values that are specific to the domain of computer science.  

In the case of STEM, the nature of the “T” seems to be less precise than in CT, involving not so 
much the use of programming (or coding), but instead the use of digital tools. For example, in the 
STEM videos published by the Teaching Channelvii, students use scientific tools such as digital 
thermometers or calculators as well as simulations (a programme for building and testing 
rollercoaster). In these cases, the technology is not vectored towards the learning of mathematics, but 
rather to the completion of what is essentially a science or engineering project. Whereas the CT 
connection privileges computer programming as the primary mode of engagement with digital 
technology, the STEM agglomeration features the use of digital technologies that are oriented 
towards their pragmatic value rather than their epistemic value (see Artigue, 2002 for a discussion of 
the distinction between these two values). 

I bring up these two examples because of the stress they will likely place on the way digital 
technologies are used and researched in mathematics education. They displace technology from 
being constitutive of mathematics (à la Rotman, 2008), which may result either in the displacement 
of technology to something you do in your CT lesson, not in mathematics, or in the isolating of 
technology as one element in a STEM fruit salad of disciplines that shares little disciplinary value 
with mathematics. Again, a crossroads view of things encourages us to think about choices, about 
going this way or that. But, at this moment in time, what we may need more of is attending to the 
multiple threads in which mathematics education is entangled and how the choices that seem on offer 
are already the consequence of a set of assumptions and commitments—and to think, what could 
things look like before the crossroads?  
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Endnotes 
i Sinclair and Jackiw (2005) describe three ways of technology evolution in mathematics 

education. The first wave focused on learners’ interactions with technology (such as Papert’s 
research with Logo); the second wave shifted from programming languages to technologies that were 
more transparently related to the school mathematics curriculum, such as graphing calculators, 
computer algebra systems and dynamic geometry environments; the third wave was concerned with 
technologies that attended to the social context of the mathematics classroom. 

ii But this should not necessarily be seen as a positive development for mathematics education. 
Paying software programmes were maintained and came along with teacher support and, frequently, 
curriculum materials; they could be expected to be developed by professional software designers, and 
to last for long periods of time.   

iii As far as I am aware, there are very few examples of digital technologies that have been 
designed for other groups of students who have been identified as under-achieving, based on gender, 
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race or socio-economic status. One exception, which dates back to the 1990s, was Klawe’s E-GEMS 
project (see Inkpen et al., 1995), which was targeted specifically for girls. A small number of 
researchers have also explored the use of digital technologies with bilingual learners, who also face 
particular challenges in the mathematics classroom (see Ng, 2016). 

iv Goodwin and Highfield (2013) distinguish three types of digital technologies: instructive, 
manipulable and constructive. Sinclair and Baccaglini-Frank (2014) describe each as follows:  

Instructive digital technologies tend to promote procedural learning, relying on evaluative 
feedback and repetitive interactions with imposed representations. Manipulable digital 
technologies enable the imposed representations to be manipulated so as to engage students in 
discovery and experimentation. […] Finally, constructive digital technologies are ones in which 
learners create their own representations, which are often the goal of the activity, thereby 
promoting mathematical modeling and what Noss and Hoyles (1996) characterize as expressive 
uses of technology. Goodwin and Highfield argue that while instructive technologies may be 
well-suited for procedural learning, manipulable and constructive technologies better support 
conceptual learning. 
v That is it possible to do this strikes me as quite interesting, but coherent with the view that 

mathematics—and thus the learning of mathematics—can be separated from its technologies. 
vi And example of this can be found in the New York State Common Core Mathematics 

Curriculum. 
vii See, for example: https://www.teachingchannel.org/videos/teaching-stem-strategies and 

https://www.teachingchannel.org/videos/stem-lesson-ideas-heat-loss-project. An analysis of these 
STEM videos is currently in preparation (Bakos et al, in preparation). 
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